Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Language
Year range
1.
Wellcome Open Research ; 2020.
Article in English | ProQuest Central | ID: covidwho-1024788

ABSTRACT

Background: The outbreak of coronavirus disease 2019 (COVID-19) started in Wuhan, China in late December 2019, and subsequently became a pandemic. Hong Kong had implemented a series of control measures since January 2020, including enhanced surveillance, isolation and quarantine, border control and social distancing. Hong Kong recorded its first case on 23 January 2020, who was a visitor from Wuhan. We analysed the surveillance data of COVID-19 to understand the transmission dynamics and epidemiology in Hong Kong. Methods: We constructed the epidemic curve of daily COVID-19 incidence from 23 January to 6 April 2020 and estimated the time-varying reproduction number (Rt) with the R package EpiEstim, with serial interval computed from local data. We described the demographic and epidemiological characteristics of reported cases. We computed weekly incidence by age and residential district to understand the spatial and temporal transmission of the disease. Results: COVID-19 disease in Hong Kong was characterised with local cases and clusters detected after two waves of importations, first in late January (week 4 to 6) and the second one in early March (week 9 to 10). The Rt increased to approximately 2 95% credible interval (CI): 0.3-3.3) and approximately 1 (95%CI: 0.2-1.7), respectively, following these importations;it decreased to below 1 afterwards from weeks 11 to 13, which coincided with the implementation, modification and intensification of different control measures. Compared to local cases, imported cases were younger (mean age: 52 years among local cases vs 35 years among imported cases), had a lower proportion of underlying disease (9% vs 5%) and severe outcome (13% vs 5%). Cases were recorded in all districts but the incidence was highest in those in the Hong Kong Island region. Conclusions: Stringent and sustained public health measures at population level could contain the COVID-19 disease at a relatively low level.

2.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.07.24.20161281

ABSTRACT

To mitigate SARS-CoV-2 transmission risks from international travellers, many countries currently use a combination of up to 14 days of self-quarantine on arrival and testing for active infection. We used a simulation model of air travellers arriving to the UK from the EU or the USA and the timing of their stages of infection to evaluate the ability of these strategies to reduce the risk of seeding community transmission. We find that a quarantine period of 8 days on arrival with a PCR test on day 7 (with a 1-day delay for test results) can reduce the number of infectious arrivals released into the community by a median 94% compared to a no quarantine, no test scenario. This reduction is similar to that achieved by a 14-day quarantine period (median 99% reduction). Shorter quarantine periods still can prevent a substantial amount of transmission; all strategies in which travellers spend at least 5 days (the mean incubation period) in quarantine and have at least one negative test before release are highly effective (e.g. a test on day 5 with release on day 6 results in a median 88% reduction in transmission potential). Without intervention, the current high prevalence in the US (40 per 10,000) results in a higher expected number of infectious arrivals per week (up to 23) compared to the EU (up to 12), despite an estimated 8 times lower volume of travel in July 2020. Requiring a 14-day quarantine period likely results in less than 1 infectious traveller each entering the UK per week from the EU and the USA (97.5th percentile). We also find that on arrival the transmission risk is highest from pre-symptomatic travellers; quarantine policies will shift this risk increasingly towards asymptomatic infections if eventually-symptomatic individuals self-isolate after the onset of symptoms. As passenger numbers recover, strategies to reduce the risk of re-introduction should be evaluated in the context of domestic SARS-CoV-2 incidence, preparedness to manage new outbreaks, and the economic and psychological impacts of quarantine.

SELECTION OF CITATIONS
SEARCH DETAIL